Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Language
Year range
1.
Braz. J. Pharm. Sci. (Online) ; 59: e23011, 2023. tab, graf
Article in English | LILACS | ID: biblio-1505852

ABSTRACT

Abstract Oil-in-water photoprotective nanoemulsions (NEs) were developed using Babassu (BBS) lipophilic extract, nonionic surfactants, and low concentrations of organic sunscreens by ultrasonic processing. BBS extract was chosen due to its suitable physicochemical properties (acidity index, peroxide index, refraction index, and relative density) and predominance of saturated fatty acids, identified by gas chromatography-mass spectrometry (GC-MS), which promote biological activities and high oxidative stability. NEs were characterized by mean droplet size, morphology, polydispersity index (PdI), pH, and organoleptic properties, and the physical stability of the NEs was evaluated for 120 days at room temperature. The sun protection factor (SPF) was determined, and the photostability and in vitro cytotoxicity assays were performed for NEs. All NEs remained stable for 120 days, with a droplet size <150 nm and a monomodal distribution profile. The pH values were compatible with the skin's pH. NE3 showed a spherical morphology, with a mean droplet size of 125.15 ± 0.16 nm and PdI of 0.145 ± 0.032. NE3 containing BBS extract and sunscreens presented an SPF of 35.5 ± 3.0, was photostable after 6 h of radiation and was non-cytotoxic to fibroblast cells. Thus, NE3 could be considered a promising formulation for developing synergic plant-extract sunscreen photoprotective products for the market


Subject(s)
Plants/adverse effects , Sunscreening Agents/pharmacology , Plant Extracts/agonists , Arecaceae/classification , Vegetable Fats , In Vitro Techniques/methods , Sun Protection Factor/classification , Gas Chromatography-Mass Spectrometry/methods
SELECTION OF CITATIONS
SEARCH DETAIL